martes, 7 de febrero de 2012

TARJETAS GRAFICAS: NVIDIA Y ATI

NVIDIA

NVIDIA Quadro es el nombre referido a la serie de tarjetas gráficas de NVIDIA, dirigidas al sector profesional. Sus diseños están orientados hacia la aceleración de CAD (Diseño asistido por ordenador) y DCC (creación de contenido digital) usualmente requeridas en estaciones de trabajo y diseñadores independientes. La serie Quadro junto a FireGL de ATI Technologies dominan este sector del mercado gráfico.


ATI

Después de completar la compra de ATI en 2006, AMD se reestructura como la única empresa en el mundo que provee un abanico de soluciones en todos los ramos de microprocesadores, tarjetas gráficas y chipsets. Así también se convierte en el mayor productor mundial de chips para TV, consolas y telefonía móvil en el mundo, con esto AMD se convierte hoy en día en el mayor rival de Intel en cuanto a soluciones en semiconductores se refiere.

FUNCIONAMIENTO DEL ALTAVOZ Y AUDIFONOS
ALTAVOZ

Cuando se aplica a la bobina la señal eléctrica procedente del amplificador o de cualquier otro equipo, se crea un campo magnético que varía de sentido de acuerdo con dicha señal. En el entrehierro del imán se coloca una bobina cilíndrica de hilo que está unida al diafragma.

La bobina genera una corriente eléctrica que provoca que el imán produzca un flujo magnético que hace vibrar la membrana .Al vibrar la membrana, mueve el aire que tiene situado frente a ella, generando así variaciones de presión en el mismo, o lo que es lo mismo, ondas sonoras. En función de las variaciones de voltaje de entrada, el cono vibra y genera perturbaciones equivalentes en el aire.


                                                                        AUDIFONOS
Primero captan la señal sonora, sea la voz humana, música, etc. Esa señal sonora (acústica) debe ser convertida en señal eléctrica para ser procesada, amplificada y finalmente reconvertida en señal acústica para llevarla al oído.
La señal acústica recibida es entonces amplificada luego de ser transformada en señal eléctrica. Y una vez que esta ampliación se produce es reconvertida en señal acústica a fin de poder ser captada por el oído. Los micrófonos convierten la señal acústica en eléctrica realizando un pasaje intermedio a energía mecánica. Esto se debe a que el sonido se propaga por medio del aire, el cual, puede comprimirse o rebotar. Dichos movimientos que hace el aire llegan a un diafragma que posee el audífono y que produce entonces ciertas variaciones de presión en él. Esa es la energía mecánica que está presente y que también es transformada en eléctrica por el micrófono.

MEMORIA FIFO


FIFO se utiliza en estructuras de datos para implementar colas. La implementación puede efectuarse con ayuda dearrays o vectores, o bien mediante el uso depunteros y asignación dinámica de memoria.
Si se implementa mediante vectores el número máximo de elementos que puede almacenar está limitado al que se haya establecido en el código del programa antes de la compilación (cola estática) o durante su ejecución (cola pseudoestática ó dinámica). Sea cual sea la opción elegida, el número de elementos que podrá almacenar la cola quedará determinado durante toda la ejecución del programa. Así, el sistema debe reservar el tamaño de memoria necesario para acoger todos los datos, sea cual sea el número de elementos usados.

                     MEMORIA LIFO

El término LIFO se utiliza en estructuras de datos y teoría de colas. Guarda analogía con una pila de platos, en la que los platos van poniéndose uno sobre el otro, y si se quiere sacar uno, se saca primero el último que se puso.
En una pila el elemento superior es el último que se agregó, y es el primero que se quitará. Es por ello que las pilas tienen una estructura LIFO.

MEMORIA FLASH-CACHE

MEMORIA FLASH


La memoria flash es una tecnología de almacenamiento derivada de la memoriaEEPROM que permite la lecto-escritura de múltiples posiciones de memoria en la misma operación. Gracias a ello, la tecnología flash, siempre mediante impulsos eléctricos, permite velocidades de funcionamiento muy superiores frente a la tecnología EEPROM primigenia, que sólo permitía actuar sobre una única celda de memoria en cada operación de programación.

MEMORIA CACHE
Una caché es un conjunto de datos duplicados de otros originales, con la propiedad de que los datos originales son costosos de acceder, normalmente en tiempo, respecto a la copia en la caché. Cuando se accede por primera vez a un dato, se hace una copia en el caché; los accesos siguientes se realizan a dicha copia, haciendo que el tiempo de acceso medio al dato sea menor.


CACHE INTERNA

Es una innovación relativamente reciente en realidad son dos, cada una con una misión específica:  Una para datos y otra para instrucciones.  Están incluidas en el procesador junto con su circuitería de control, lo que significa tres cosas:  comparativamente es muy cara; extremadamente rápida, y limitada en tamaño (en cada una de las cachés internas, los 386 tenían 8 KB; el 486 DX4 16 KB, y los primeros Pentium 8 KB).  Como puede suponerse, su velocidad de acceso es comparable a la de los registros, es decir, centenares de veces más rápida que la RAM.


CACHE EXTERNA
Es más antigua que la interna, dado que hasta fecha "relativamente" reciente estas últimas eran impracticables.   Es una memoria de acceso rápido incluida en la placa base, que dispone de su propio bus y controlador independiente que intercepta las llamadas a memoria antes que sean enviadas a la RAM La caché externa típica es un banco SRAM ("Static Random Access Memory") de entre 128 y 256 KB. Esta memoria es considerablemente más rápida que la DRAM ("Dynamic Random Access Memory") convencional, aunque también mucho más cara  (tenga en cuenta que un aumento de tamaño sobre los valores anteriores no incrementa proporcionalmente la eficacia de la memoria caché).  Actualmente (2004) la tendencia es incluir esta caché en el procesador.  Los tamaños típicos oscilan entre 256 KB y 1 MB

FUNCIONAMIENTO DEL MOUSE


Su funcionamiento principal depende de la tecnología que utilice para capturar el movimiento al ser desplazado sobre una superficie plana o alfombrilla especial para ratón, y transmitir esta información para mover una flecha o puntero sobre el monitor de la computadora. Dependiendo de las tecnologías empleadas en el sensor del movimiento o por su mecanismo y del método de comunicación entre éste y la computadora, existen multitud de tipos o familias.
El objetivo principal o más habitual es seleccionar distintas opciones que pueden aparecer en la pantalla, con uno o dos clic, pulsaciones, en algún botón o botones. Para su manejo el usuario debe acostumbrarse tanto a
desplazar el puntero como a pulsar con uno o dos clic para la mayoría de las tareas.


FUNCIONAMIENTO DEL TECLADO

Las teclas se hallan ligadas a una matriz de circuitos (o matriz de teclas) de dos dimensiones. Cada tecla, en su estado normal (no presionada) mantiene abierto un determinado circuito. Al presionar una tecla, el circuito asociado se cierra, y por tanto circula una pequeña cantidad de corriente a través de dicho circuito. El microprocesador detecta los circuitos que han sido cerrados, e identifica en qué parte de la matriz se encuentran, mediante la asignación de un par de coordenadas (x,y).


FUNCIONAMIENTO DEL MICROFONO

Un micrófono es un dispositivo hecho para capturar ondas en el aire, agua (hidrófono) o materiales duros, y traducirlas a señales eléctricas.El método más común es el que emplea una delgada membrana que vibra por el sonido y que produce una señal eléctrica proporcional.

 



FUNCIONAMIENTO DEL ESCANER

Como funciona un escáner de sobremesa, aunque el proceso de digitalización de todos ellos es casi idéntico. El escáner es un periférico que nos permite ditgitalizar imágenes o texto en un dispositivo de almacenamiento para su tratamiento informático con software apropiado.Se entiende por digitalizar convertir una señal analógica y convertirla en información entendible por el ordenador.

                            FUNCIONAMIENTO DE LA CAMARA DIGITAL


El funcionamiento de una digital es muy sencillo: una cámara de vídeo captura imagenes cualesquiera y las pasa a un ordenador que las traduce a lenguaje binario y las envía cada una determinada cantidad de segundos (10, 20, 30 o lo que el dueño determine) a Internet para disfrute de todo aquel que quiera verlas. Una cámara toma imágenes que envía regularmentre a un ordenador, de las cuales algunas se actualizan cada pocos segundos y otras cada varias horas/días.
El ordenador mediante un hardware/software adecuado traduce las imágenes a un formato binario( normalmente suelen ser ficheros jpeg). Las imágenes traducidas son incluídas dentro de una dirección URL, la cúal nos da la posibilidad de que las imágenes sean vistas en la WWW, de manera que siempre está disponible la imagen más reciente. Así, cuando alguién solicita la página de una webcam, puede ver en su navegador la última imagen.
RANURAS PCI

 PCI es un bus de ordenador estándar para conectar dispositivos periféricos directamente a su placa base. Estos dispositivos pueden ser circuitos integrados ajustados en ésta (los llamados "dispositivos planares" en la especificación PCI) o tarjetas de expansión que se ajustan en conectores. Es común en lascomputadoras personales, donde ha desplazado al ISA como bus estándar, pero también se emplea en otro tipo de ordenadores.
A diferencia de los buses ISA, el bus PCI permite la configuración dinámica de un dispositivo periférico. En el tiempo de arranque del sistema, las tarjetas PCI y elBIOS interactúan y negocian los recursos solicitados por la tarjeta PCI.
Aparte de esto, el bus PCI proporciona una descripción detallada de todos los dispositivos PCI conectados a través del espacio de configuración PCI.

TIPOS DE RANURA PCI

PCI Express(anteriormente conocido por las siglas 3GIO, en el caso de las "Entradas/Salidas de Tercera Generación", en inglés: 3rd Generation I/O) es un nuevo desarrollo del bus PCI que usa los conceptos de programación y los estándares de comunicación existentes, pero se basa en un sistema de comunicación serie mucho más rápido.

PCI 2.2 funciona a 66 MHz (requiere 3.3 voltios en las señales) (índice de transferencia máximo de 503 MiB/s (533MB/s)

PCI 2.3 permite el uso de 3.3 voltios y señalizador universal, pero no soporta los 5 voltios en las tarjetas.

PCI 3.0 es el estándar final oficial del bus, con el soporte de 5 voltios completamente removido.

PCI-X cambia el protocolo levemente y aumenta la transferencia de datos a 133 MHz (índice de transferencia máximo de 1014 MiB/s).

PCI-X 2.0 especifica un ratio de 266 MHz (índice de transferencia máximo de 2035 MiB/s) y también de 533 MHz, expande el espacio de configuración a 4096 bytes, añade una variante de bus de 16 bits y utiliza señales de 1.5 voltios.

Mini PCI es un nuevo formato de PCI 2.2 para utilizarlo internamente en los portátiles.

PC/104-Plus es un bus industrial que utiliza las señales PCI con diferentes conectores.


RANURAS AGP




Accelerated Graphics Port o AGP (en español "puerto de gráficos acelerado) es un puerto (puesto que sólo se puede conectar un dispositivo, mientras que en el bus se pueden conectar varios) desarrollado por Intel en 1996 como solución a los cuellos de botella que se producían en las tarjetas gráficas que usaban el bus PCI. El diseño parte de las especificaciones del PCI 2.1.

El bus AGP cuenta con diferentes modos de funcionamiento.

AGP 1X: velocidad 66 MHz con una tasa de transferencia de 266 MB/s y funcionando a un voltaje de 3,3V.

AGP 2X: velocidad 133 MHz con una tasa de transferencia de 532 MB/s y funcionando a un voltaje de 3,3V.

AGP 4X: velocidad 266 MHz con una tasa de transferencia de 1 GB/s y funcionando a un voltaje de 3,3 o 1,5V para adaptarse a los diseños de las tarjetas gráficas.

AGP 8X: velocidad 533 MHz con una tasa de transferencia de 2 GB/s y funcionando a un voltaje de 0,7V o 1,5V.

El puerto AGP se utiliza exclusivamente para conectar tarjetas gráficas, y debido a su arquitectura sólo puede haber una ranura. Dicha ranura mide unos 8 cm y se encuentra a un lado de las ranuras PCI.
PUERTOS
USB: Un puerto USB permite conectar hasta 127 dispositivos y ya es un estándar en los ordenadores de última generación, que incluyen al menos cuatro puertos USB 2.0 en los más modernos, y algún USB 1.1 en los más anticuados
Pero ¿qué otras ventajas ofrece este puerto? Es totalmente Plug & Play, es decir, con sólo conectar el dispositivo y "en caliente" (con el ordenador ya encendido), el dispositivo es reconocido, e instalado, de manera inmediata. Sólo es necesario que el Sistema Operativo lleve incluido el correspondiente controlador o driver. Presenta una alta velocidad de transferencia en comparación con otro tipo de puertos. USB 1.1 alcanza los 12 Mb/s y hasta los 480 Mb/s (60 MB/s) para USB 2.0, mientras un puerto serie o paralelo tiene una velocidad de transferencia inferior a 1 Mb/s. El puerto USB 2.0 es compatible con los dispositivos USB 1.1
A través del cable USB no sólo se transfieren datos; además es posible alimentar dispositivos externos. El consumo máximo de este controlador es de 2.5 Watts. Los dispositivos se pueden dividir en dispositivos de bajo consumo (hasta 100 mA) y dispositivos de alto consumo (hasta 500 mA). Para dispositivos que necesiten más de 500 mA será necesaria alimentación externa. Hay que tener en cuenta, además, que si se utiliza un concentrador y éste está alimentado, no será necesario realizar consumo del bus. Una de las limitaciones de este tipo de conexiones es que longitud del cable no debe superar los 5 ms y que éste debe cumplir las especificaciones del Standard USB iguales para la 1.1 y la 2.0.

Ethernet es un estándar de redes de área local para computadores con acceso al medio por contienda CSMA/CD. CSMA/CD (Acceso Múltiple por Detección de Portadora con Detección de Colisiones), es una técnica usada en redes Ethernet para mejorar sus prestaciones. El nombre viene del concepto físico de ether. Ethernet define las características de cableado y señalización de nivel físico y los formatos de tramas de datos del nivel de enlace de datos del modelo OSI.
La Ethernet se tomó como base para la redacción del estándar internacional IEEE 802.3. Usualmente se toman Ethernet e IEEE 802.3 como sinónimos. Ambas se diferencian en uno de los campos de la trama de datos. Las tramas Ethernet e IEEE 802.3 pueden coexistir en la misma red.


Un módem (Modulador Demodulador) es un dispositivo que sirve para enviar una señal llamada moduladora mediante otra señal llamada portadora. Se han usado módems desde los años 60, principalmente debido a que la transmisión directa de las señales electrónicas inteligibles, a largas distancias, no es eficiente, por ejemplo, para transmitir señales de audio por el aire, se requerirían antenas de gran tamaño (del orden de cientos de metros) para su correcta recepción. Es habitual encontrar en muchos módems de red conmutada la facilidad de respuesta y marcación automática, que les permiten conectarse cuando reciben una llamada de la RTPC (Red Telefónica Pública Conmutada) y proceder a la marcación de cualquier número previamente grabado por el usuario. Gracias a estas funciones se pueden realizar automáticamente todas las operaciones de establecimiento de la comunicación.
PS/2: El conector PS/2 o puerto PS/2 toma su nombre de la serie de ordenadores IBM Personal System/2 que es creada por IBM en1987, y empleada para conectar teclados y ratones. Muchos de los adelantos presentados fueron inmediatamente adoptados por el mercado del PC, siendo este conector uno de los primeros.
El conector PS/2 no se clasifica en la partida 8517 del arancel de aduanas.
La comunicación en ambos casos es serial (bidireccional en el caso del teclado), y controlada por microcontroladores situados en la placa madre. No han sido diseñados para ser intercambiados en caliente, y el hecho de que al hacerlo no suela ocurrir nada es más debido a que los microcontroladores modernos son mucho más resistentes a cortocircuitos en sus líneas de entrada/salida.
DB-9 RS232: El conector RS-232 fue desarrollado originalmente para uso de 25 pines. En este DB25 disposiciones de patillas de conectores fueron hechos para un segundo canal de comunicación serie RS232.En la práctica, sólo un canal de comunicación serie con protocolo de enlace de acompañamiento está presente. Sólo muy pocos ordenadores han sido fabricados en los dos canales serie RS232 se implementan. Ejemplos de esto son el Sol SparcStation 10 y los modelos de 20 y el Multia DEC Alpha. También en una serie de modelos de módem Telebit el canal secundario está presente. Se puede utilizar para consultar el estado del módem, mientras que el módem está en línea y ocupado la comunicación. En las computadoras personales, el más pequeño DB9 versión es más comúnmente utilizado hoy en día. Los diagramas muestran las señales comunes a ambos tipos de conectores en negro. Los pasadores se definen sólo presentes en el conector más grande se muestran en rojo. Tenga en cuenta, que la tierra de protección se asigna a un pasador en el conector grande donde se utiliza la parte exterior conector para tal fin con el DB9 versión conector.

e-SATA: Puerto sata es la entrada para los disco duros efectivamente, te servira de mucha ayuda para conectar discos duros externos o si tienes discos duros que quitaste de tu cpu puedes conectarlos ahi y checar archivos de respaldo sin tener que abrir o instalar completamente el disco. felicidades te acabas de ahorrar minimo 500 pesos en adapatadores de sata a usb, pd: a veces puedes tener problemas para que los reconozca, es normal intenta varias veces conectar y desconectar hasta que funcione. suerte y a disfrutar computadora.

PLACA BASE

La placa base, también conocida como placa madre o tarjeta madre es una placa de circuito impreso a la que se conectan los componentes que constituyen la computadora u ordenador. Tiene instalados una serie de circuitos integrados, entre los que se encuentra el chipset, que sirve como centro de conexión entre el microprocesador, la memoria de acceso aleatorio (RAM), las ranuras de expansión y otros dispositivos.



El [[zócalo de CPU] es un receptáculo que recibe el microprocesador y lo conecta con el resto de componentes a través de la placa base.


Las ranuras de memoria RAM, en número de 2 a 6 en las placas base comunes.

El chipset: una serie de circuitos electrónicos, que gestionan las transferencias de datos entre los diferentes componentes de la computadora. Se divide en dos secciones, el puente norte (northbridge) y el puente sur (southbridge). El primero gestiona la interconexión entre el microprocesador, la memoria RAM y la unidad de procesamiento gráfico; y el segundo entre los periféricos y los dispositivos de almacenamiento, como los discos duros o las unidades de disco óptico. Las nuevas líneas de procesadores de escritorio tienden a integrar el propio controlador de memoria en el interior del procesador:


  • Un reloj: regula la velocidad de ejecución de las instrucciones del microprocesador y de los periféricos internos.
  • La CMOS: una pequeña memoria que preserva cierta información importante (como la configuración del equipo, fecha y hora), mientras el equipo no está alimentado por electricidad.
  • La pila de la CMOS: proporciona la electricidad necesaria para operar el circuito constantemente y que éste último no se apague perdiendo la serie de configuraciones guardadas.
  • La BIOS: un programa registrado en una memoria no volátil (antiguamente en memorias ROM, pero desde hace tiempo se emplean memorias flash). Este programa es específico de la placa base y se encarga de la interfaz de bajo nivel entre el microprocesador y algunos periféricos. Recupera, y después ejecuta, las instrucciones del MBR (Master Boot Record), registradas en un disco duro o SSD, cuando arranca el sistema operativo.
  • El bus (también llamado bus interno o en inglés front-side bus'): conecta el microprocesador al chipset, está cayendo en desuso frente a HyperTransport y Quickpath.
  • El bus de memoria conecta el chipset a la memoria temporal.
  • El bus de expansión (también llamado bus I/O): une el microprocesador a los conectores entrada/salida y a las ranuras de expansión.
  • Los conectores de entrada/salida que cumplen normalmente con la norma PC 99: estos conectores incluyen:
    • Los puertos PS2 para conectar el teclado o el ratón, estas interfaces tienden a desaparecer a favor del USB
    • Los puertos serie, por ejemplo para conectar dispositivos antiguos.
    • Los puertos paralelos, por ejemplo para la conexión de antiguas impresoras.
    • Los puertos USB (en inglés Universal Serial Bus), por ejemplo para conectar periféricos recientes.
    • Los conectores RJ45, para conectarse a una red informática.
    • Los conectores VGA, DVI, HDMI o Displayport para la conexión del monitor de la computadora.
    • Los conectores IDE o Serial ATA, para conectar dispositivos de almacenamiento, tales como discos duros, unidades de estado sólido y unidades de disco óptico.
    • Los conectores de audio, para conectar dispositivos de audio, tales como altavoces o micrófonos.
  • Las ranuras de expansión: se trata de receptáculos que pueden acoger tarjetas de expansión (estas tarjetas se utilizan para agregar características o aumentar el rendimiento de un ordenador; por ejemplo, un tarjeta gráfica se puede añadir a un ordenador para mejorar el rendimiento 3D). Estos puertos pueden ser puertos ISA (interfaz antigua), PCI (en inglés Peripheral Component Interconnect) y, los más recientes, PCI Express.
SOCKET

El zócalo  es un sistema electromecánico de soporte y conexión eléctrica, instalado en la placa base, que se usa para fijar y conectar un microprocesador. Se utiliza en equipos de arquitectura abierta, donde se busca que haya variedad de componentes permitiendo el cambio de la tarjeta o el integrado.

CHIPSET
El chipset es el conjunto de chips que se encarga de controlar algunas funciones concretas del ordenador, como la forma en que interacciona el microprocesador con la memoria o la caché, o el control de los puertos y slots ISA, PCI, AGP, USB.

El chipset controla el sistema y sus capacidades, es el encargado de realizar todas las transferencias de datos entre los buses, la memoria y el microprocesador, por ello es casi el "alma" del ordenador. Dentro de los modernos chipset se integran además distintos dispositivos como la controladora de vídeo y sonido, que ofrecen una increíble integración que permite construir equipo de reducido tamaño y bajo coste.


MONITOR CRT


En la parte trasera del tubo encontramos la rejilla catódica, que envía electrones a la superficie interna del tubo. Estos electrones al estrellarse sobre el fósforo hacen que este se ilumine. Un CRT es básicamente un tubo vacío con un cátodo (el emisor de luz electrónico y un ánodo (la pantalla recubierta de fósforo) que permiten a los electronesviajar desde el terminal negativo al positivo. El yugo del monitor, una bobina magnética, desvía la emisión de electrones repartiéndolo por la pantalla, para pintar las diversas líneas que forman un cuadro o imagencompleta.

Los monitores monocromos utilizan un único tipo de fósforo pero los monitores de color emplean un fósforo de tres colores distribuidos por triadas. Cada haz controla uno de los colores básicos: rojo, azul y verde sobre los puntos correspondientes de la pantalla.

A medida que mejora la tecnología de los monitores, la separación entre los puntos disminuye y aumenta la resolución en pantalla (la separación entre los puntos oscila entre 0.25mm y 0.31mm). Loa avances en los materiales y las mejoras de diseño en el haz de electrones, producirían monitores de mayor nitidez y contraste. El fósforo utilizado en un monitor se caracteriza por su persistencia, esto es, el periodo que transcurre desde que es excitado (brillante) hasta que se vuelve inactivo (oscuro).


MONITOR LCD

El cristal líquido es un tipo de material que tiene unas propiedades especiales que le hacen vivir en la frontera entre los líquidos y los sólidos. Sus moléculas pueden orientarse cuando se las somete a una tensión eléctrica. Esta propiedad se utiliza para construir pantallas en las que se visualiza información.
Las sustancias utilizadas para fabricar cristales líquidos son muy variadas: benzoato de colesterol, vinilo, kevlar, polipéptidos, etc. 

Las primeras pantallas de cristal líquido se utilizaron en relojes, calculadoras e instrumentos de medida. Además de precisar de poco espacio, ya que su grosor es muy pequeño, también consumen poca electricidad cuando funcionan.

El cristal líquido no emite la luz que podemos ver en estas pantallas. Su función es dejar pasar, o no, la luz a través suyo. 

En las pantallas de los relojes de pulsera o de las calculadoras, la luz exterior atraviesa la pantalla por un primer filtro polarizador. El plano de oscilación de esta luz polarizada es girado por los cristales líquidos, lo que le permite atravesar el segundo filtro polarizador (Que se encentra girado 90º con respecto al primero). La luz que atraviesa este segundo filtro se refleja en una capa reflectora interior y vuelve a salir al exterior dando una tonalidad clara a esa zona de la pantalla. Si se aplica una tensión al cristal líquido este se orienta, perpendicularmente a la pantalla, con lo que ya no gira el plano de oscilación de la luz polarizada incidente. Por esto mismo la luz no puede atravesar el segundo filtro polarizador y llegar a la capa reflectora interior y por eso esa zona de la pantalla permanece oscura (Formando letras y números).

En las pantallas de televisión LCD, para conseguir una mayor luminosidad, se ilumina desde atrás con unos tubos fluorescentes. Los píxeles a donde se hace llegar una tensión eléctrica permanecen oscuros y el resto iluminados. Cada píxel esta dividido en tres zonas verde azul y roja, para poder conseguir con su suma todo tipo de colores.
Para poder controlar eléctricamente cada píxel se habrían de conectar todos ellos a dos puntos de contacto, lo que supone una gran cantidad de contactos. Por ello se utiliza un sistema de multiplexado que reduce mucho el número de conexiones.

IMPRESORA LASER

 La impresion se consigue mediante un haz de luz laser que va dibujando la imagen (o el texto) en un tambor giratorio y sensible a la luz, generando en su superficie una imagen de cargas electricas, la cual, a medida que pasa por una “melena” magnetica de tinta en polvo muy fino, llamado toner (igual que el de las fotocopiadoras) lo atrae y se le adhiere electrostaticamente. Por ultimo, el tambor sigue girando y se encuentra con la hoja, en la cual deposita el toner que formara la imagen definitiva, la cual se fija al papel mediante calor aplicado con rodillos de presion.
IMPRESORA DE MATRIZ DE PUNTO

Las impresoras de matriz de puntos, o de impacto, tienen un cabezal movil con 9 o 24 pequeñas agujas (pines) que impactan sobre una cinta impregnada con tinta, la cual se transfiere al papel para formar la imagen deseada. Cuantas mas agujas posea el cabezal de impresion, mayor sera la resolucion, que suele estar entre 150 y 300 ppp. Por ser impresoras de impacto que producen un ruido caracteristico-, su calidad de impresion es baja pero se pueden obtener copias multiples.


 
IMPRESORA DE INYECCION DE TINTA

Se llama “impresoras de inyeccion de tinta” (Ink Jet Printer) a aquellas en lasque la tinta, soluble en agua o aceite, se encuentra en forma mas o menos liquida en un cartucho (cartridge) contenedor. En el momento que enviamos a imprimir algo, la impresora recibe los datos y los almacena en una memoria intermedia (buffer) hasta tener los sufi cientes para generar una matriz de senales para enviar al cartucho de impresion. El cartucho tiene un cabezal (head) con una serie de orificios inyectores que se comportan como canones por los que sale la tinta a presion, a medida que el circuito procesador de la impresora le envía las senales electricas correspondientes por el cable plano que vemos moverse junto con el cartucho. Para dibujar un determinado caracter (una letra, por ejemplo) la impresora debera activar al mismo tiempo tantos orificios como sean necesarios para poder imprimirlo.

UNIDAD CD-ROM O LECTORA


 
Un CD-ROM (siglas del inglés Compact Disc - Read Only Memory), es un pre-prensado disco compacto que contiene los datos de acceso, pero sin permisos de escritura, un equipo de almacenamiento y reproducción de música, el CD-ROM estándar fue establecido en 1985 por Sony y Philips. Pertenece a un conjunto de libros de colores conocido comoRainbow Books que contiene las especificaciones técnicas para todos los formatos de discos compactos.

Un CD-ROM estándar puede albergar 650 o 700 (a veces 800) MB de datos. El CD-ROM es popular para la distribución de software, especialmente aplicaciones multimedia, y grandes bases de datos. Un CD pesa menos de 30 gramos.
Para poner la memoria del CD-ROM en contexto, una novela promedio contiene 60,000 palabras. Si se asume que una palabra promedio tiene 10 letras (de hecho es considerablemente menos de 10 de letras) y cada letra ocupa un byte, una novela por lo tanto ocuparía 600,000 bytes (600 kb). Un CD puede por lo tanto contener más de 1000 novelas.


UNIDAD CD-RW (REGRABADORA)

Las unidades de CD-ROM son de sólo lectura. Es decir, pueden leer la información en un disco, pero no pueden escribir datos en él.

Una regrabadora puede grabar y regrabar discos compactos. Las características básicas de estas unidades son la velocidad de lectura, de grabación y de regrabación. En los discos regrabables es normalmente menor que en los discos que sólo pueden ser grabados una vez. Las regrabadoras que trabajan a 8X, 16X, 20X, 24X, etc., permiten grabar los 650, 700 o más megabytes (hasta 900 MB) de un disco compacto en unos pocos minutos. Es habitual observar tres datos de velocidad, según la expresión ax bx cx (a:velocidad de lectura; b: velocidad de grabación; c: velocidad de regrabación).


UNIDAD DVD-ROM o "lectora de DVD"


Las unidades de DVD-ROM son aparentemente iguales que las de CD-ROM, pueden leer tanto discos DVD-ROM como CD-ROM. Se diferencian de las unidades lectoras de CD-ROM en que el soporte empleado tiene hasta 17 GB de capacidad, y en la velocidad de lectura de los datos. La velocidad se expresa con otro número de la «x»: 12x, 16x... Pero ahora la x hace referencia a 1,32 MB/s. Así: 16x = 21,12 MB/s.
Las conexiones de una unidad de DVD-ROM son similares a las de la unidad de CD-ROM: placa base, fuente de alimentación y tarjeta de sonido. La diferencia más destacable es que las unidades lectoras de discos DVD-ROM también pueden disponer de una salida de audio digital. Gracias a esta conexión es posible leer películas en formato DVD y escuchar seis canales de audio separados si disponemos de una buena tarjeta de sonido y un juego de altavoces apropiado (subwoofer más cinco satélites).


UNIDAD DE DVD-RW


Puede leer y grabar y regrabar imágenes, sonido y datos en discos de varios gigabytes de capacidad, de una capacidad de 650 MB a 9 GB.


BLU-RAY

 Blu-ray, también conocido como Blu-ray Disc o BD, es un formato de disco óptico de nueva generación de 12 cm de diámetro (igual que el CD y el DVD) para vídeo de gran definición y almacenamiento de datos de alta densidad. Su capacidad de almacenamiento llega a 25 GB por capa, aunque Sony y Panasonic han desarrollado un nuevo índice de evaluación que permitiría ampliar un 33% la cantidad de datos almacenados, desde 25 a 33,4 GB por capa. Aunque otros apuntan que el sucesor del DVD no será un disco óptico, sino la tarjeta de memoria. No obstante, se está trabajando en el HVD o Disco holográfico versátil con 3,9 TB. El límite de capacidad en las tarjetas de formato SD/MMC está ya en 128 GB, teniendo la ventaja de ser regrabables al menos durante 5 años.